Asymptotics of Divide-And-Conquer Recurrences Via Iterated Function Systems

نویسنده

  • John C. Kieffer
چکیده

fn = (k −mod(n, k))fbn/kc +mod(n, k)fdn/ke + an, n ≥ k, there is a unique continuous periodic function f∗ : R→ R with period 1 such that fn = nf(logk n)+o(n). If (an) is periodic with period k, ak = 0, and the initial conditions (fi : 1 ≤ i ≤ k − 1) are all zero, we obtain a specific iterated function system S, consisting of k continuous functions from [0, 1] × R into itself, such that the attractor of S is {(x, f∗(x)) : 0 ≤ x ≤ 1}. Using the system S, an accurate plot of f∗ can be rapidly obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotics of linear divide-and-conquer recurrences

Asymptotics of divide-and-conquer recurrences is usually dealt either with elementary inequalities or with sophisticated methods coming from analytic number theory. Philippe Dumas proposes a new approach based on linear algebra. The example of the complexity of Karatsuba’s algorithm is used as a guide in this summary. The complexity analysis of divide-and-conquer algorithms gives rise to recurr...

متن کامل

Exact Asymptotics of Divide-and-Conquer Recurrences

The divide-and-conquer principle is a majoi paradigm of algorithms design. Corresponding cost functions satisfy recurrences that directly reflect the decomposition mechanism used in the algorithm. This work shows that periodicity phenomena, often of a fractal nature, are ubiquitous in the performances of these algorithms. Mellin transforms and Dirichlet series are used to attain precise asympto...

متن کامل

طراحی ساختاری به روشDivide & Conquer و کاربرد آن در طراحی سوئیچ MSC

This paper presents the structural design for huge systems using Divide & Conquer (D&C) method as a scientific method for optimum designing of complex systems. This method divides the main system into several simple subsystems. Submitted equations in three different cases prove that the optimum response (number of subsystems for minimum system complexity) is independent of main system complexit...

متن کامل

Notes on Better Master Theorems for Divide-and-Conquer Recurrences

Techniques for solving divide-and-conquer recurrences are routinely taught to thousands of Computer Science students each year. The dominant approach to solving such recurrences is known as the Master Method [2]. Recently, Akra and Bazzi [1] discovered a surprisingly elegant generalization of the Master Method that yields a very simple formula for solving most divideand-conquer recurrences. In ...

متن کامل

Geometrical Interpretation of the Master Theorem for Divide-and-conquer Recurrences

We provide geometrical interpretation of the Master Theorem to solve divide-and-conquer recurrences. We show how different cases of the recurrences correspond to different kinds of fractal images. Fractal dimension and Hausdorff measure are shown to be closely related to the solution of such recurrences.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012